import random, sys
|
|
|
|
def miller_rabin_pass(a, s, d, n):
|
|
'''
|
|
n is an odd number with
|
|
n-1 = (2^s)d, and d odd
|
|
and a is the base: 1 < a < n-1
|
|
|
|
returns True iff n passes the MillerRabinTest for a
|
|
'''
|
|
a_to_power = pow(a, d, n)
|
|
i=0
|
|
#Invariant: a_to_power = a^(d*2^i) mod n
|
|
|
|
# we test whether (a^d) = 1 mod n
|
|
if a_to_power == 1:
|
|
return True
|
|
|
|
# we test whether a^(d*2^i) = n-1 mod n
|
|
# for 0<=i<=s-1
|
|
while(i < s-1):
|
|
if a_to_power == n - 1:
|
|
return True
|
|
a_to_power = (a_to_power * a_to_power) % n
|
|
i+=1
|
|
|
|
# we reach here if the test failed until i=s-2
|
|
return a_to_power == n - 1
|
|
|
|
def miller_rabin(n):
|
|
'''
|
|
Applies the MillerRabin Test to n (odd)
|
|
|
|
returns True iff n passes the MillerRabinTest for
|
|
K random bases
|
|
'''
|
|
#Compute s and d such that n-1 = (2^s)d, with d odd
|
|
d = n-1
|
|
s = 0
|
|
while d%2 == 0:
|
|
d >>= 1
|
|
s+=1
|
|
|
|
#Applies the test K times
|
|
#The probability of a false positive is less than (1/4)^K
|
|
K = 20
|
|
|
|
i=1
|
|
while(i<=K):
|
|
# 1 < a < n-1
|
|
a = random.randrange(2,n-1)
|
|
if not miller_rabin_pass(a, s, d, n):
|
|
return False
|
|
i += 1
|
|
|
|
return True
|
|
|
|
def gen_prime(nbits):
|
|
'''
|
|
Generates a prime of b bits using the
|
|
miller_rabin_test
|
|
'''
|
|
while True:
|
|
p = random.getrandbits(nbits)
|
|
#force p to have nbits and be odd
|
|
p |= 2**nbits | 1
|
|
if miller_rabin(p):
|
|
return p
|
|
break
|
|
|
|
def gen_prime_range(start, stop):
|
|
'''
|
|
Generates a prime within the given range
|
|
using the miller_rabin_test
|
|
'''
|
|
while True:
|
|
p = random.randrange(start,stop-1)
|
|
p |= 1
|
|
if miller_rabin(p):
|
|
return p
|
|
break
|
|
|
|
if __name__ == "__main__":
|
|
if sys.argv[1] == "test":
|
|
n = sys.argv[2]
|
|
print (miller_rabin(n) and "PRIME" or "COMPOSITE")
|
|
elif sys.argv[1] == "genprime":
|
|
nbits = int(sys.argv[2])
|
|
print(gen_prime(nbits))
|
|
|
|
|