You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

63 lines
1.5 KiB

'''
Created on Dec 14, 2011
@author: pablocelayes
'''
def rational_to_contfrac(x,y):
'''
Converts a rational x/y fraction into
a list of partial quotients [a0, ..., an]
'''
a = x//y
pquotients = [a]
while a * y != x:
x,y = y,x-a*y
a = x//y
pquotients.append(a)
return pquotients
#TODO: efficient method that calculates convergents on-the-go, without doing partial quotients first
def convergents_from_contfrac(frac):
'''
computes the list of convergents
using the list of partial quotients
'''
convs = [];
for i in range(len(frac)):
convs.append(contfrac_to_rational(frac[0:i]))
return convs
def contfrac_to_rational (frac):
'''Converts a finite continued fraction [a0, ..., an]
to an x/y rational.
'''
if len(frac) == 0:
return (0,1)
num = frac[-1]
denom = 1
for _ in range(-2,-len(frac)-1,-1):
num, denom = frac[_]*num+denom, num
return (num,denom)
def test1():
'''
Verify that the basic continued-fraction manipulation stuff works.
'''
testnums = [(1, 1), (1, 2), (5, 15), (27, 73), (73, 27)]
for r in testnums:
(num, denom) = r
print('rational number:')
print(r)
contfrac = rational_to_contfrac (num, denom)
print('continued fraction:')
print(contfrac)
print('convergents:')
print(convergents_from_contfrac(contfrac))
print('***********************************')
if __name__ == "__main__":
test1()