
WRITEUP TAMUCTF
TEAM

BRAHMASTRA

TEAM:
- Christopher Hendratno

- I Wayan Nyeneng Eka Saputra

Table of Contents

A. Pwn - Pwn 1 5
1. Executive Summary 5
2. Technical Report 5
3. Flag 6

B. Pwn - Pwn 2 7
1. Executive Summary 7
2. Technical Report 7
3. Flag 9

C. Pwn - Pwn 3 10
1. Executive Summary 10
2. Technical Report 10
3. Flag 11

D. Pwn - Pwn 4 12
1. Executive Summary 12
2. Technical Report 12
3. Flag 15

E. Pwn - Pwn 5 16
1. Executive Summary 16
2. Technical Report 16
3. Flag 18

F. Web - Not Another SQLi Challenge 19
1. Executive Summary 19
2. Technical Report 19
3. Flag 20

G. Web - Robots Rule 21
1. Executive Summary 21
2. Technical Report 21
3. Flag 22

H. Web - Many Gig’ems to you! 23
1. Executive Summary 23
2. Technical Report 23
Flag 24

I. Crypto - -.- 25
1. Executive Summary 25
2. Technical Report 25
3. Flag 26

J. Crypto - RSAaaay 27
1. Executive Summary 27
2. Technical Report 27
3. Flag 29

K. Crypto - :) 30
1. Executive Summary 30
2. Technical Report 30
3. Flag 31

L. Reverse - Cheesy 32
1. Executive Summary 32
2. Technical Report 32
3. Flag 33

M. Reverse - Snakes over cheese 34
1. Executive Summary 34
2. Technical Report 34
3. Flag 34

N. Reverse - KeyGenMe 35
1. Executive Sumarry 35
2. Technical Report 35

2.1 First Solution 36
2.2 Second Solution 40

3. Flag 41

O. Network/Pentest - Stop and Listen 42
1. Executive Summary 42
2. Technical Report 42
3. Flag 43

P. MicroServices - 0_intrusion 44
1. Executive Summary 44
2. Technical Report 44
3. Flag 44

Q. Secure Coding - PWN 45

1. Executive Summary 45
2. Technical Report 45
3. Flag 46

R. Secure Coding - SQL 47
Executive Summary 47
Technical Report 47
Flag 49

S. Misc - I heard you like files 50
Executive Summary 50
Technical Report 50
Flag 51

T. Misc - Hello World 52
Executive Summary 52
Technical Report 52
Flag 54

U. ReadingRainbow - 0_Network_Enumeration 55
Executive Summary 55
Technical Report 55
Flag 55

V. DriveByInc - 0_intrusion 56
Executive Summary 56
Technical Report 56
Flag 56

A. Pwn - Pwn 1

1. Executive Summary
nc pwn.tamuctf.com 4321
Difficulty: easy

2. Technical Report
Given binary file pwn1 with detail below

To understand program’s flow faster, I’m using IDA Pro for debugging process, and here is the
result

From the images above, we could understand that:
1. Our first input must be “Sir Lancelot of Camelot”, by doing that we won’t get exit(0).
2. Our second input also must be “To seek the Holy Grail.” to avoid getting exit(0).
3. And our last input must be long enough to overwrite condition variable with value

0xdea110c8.

For the payload, we need to find the difference between our last input and condition variable, to
do that we can do simple calculation

Now, we have all the component for the payload, let’s create the payload

Run the payload

3. Flag
gigem{34sy_CC428ECD75A0D392}

B. Pwn - Pwn 2

1. Executive Summary
nc pwn.tamuctf.com 4322
Difficulty: easy

2. Technical Report
Given binary file pwn2 with detail below

To understand program’s flow faster, I’m using IDA Pro for debugging process, and here is the
result

From the images above, we could understand that:
1. At first, our input will pass through to the select_func().
2. In the select_func(), at first, it assigns function_to_go variable value into address of

two().
3. Then it copies our input into dest variable with maximal length 31.
4. If our input is equal to “one”, it’ll call one().
5. Else, it’ll call two().
6. There is print_flag() that will print flag.txt file that is located in the server.

So to receive the flag, we must be able to call print_flag(), and to call print_flag() we must
overwrite function_to_go value into address of print_flag(). But how we do that? After doing
some deep analysis, I realize that the difference between dest variable and function_to_go
variable is 30

So I can conclude that this program has Off by One vulnerability, so we already have the length
of the padding, time to craft the payload. For the last part of the payload, we input the last bit of
print_flag’s address, we can find that by using objdump

Run the payload

3. Flag
gigem{4ll_17_74k35_15_0n3}

C. Pwn - Pwn 3

1. Executive Summary
nc pwn.tamuctf.com 4323
Difficulty: easy

2. Technical Report
Given binary file pwn3 with detail below

Hmmmm, from the image above we find that NX is disabled, so I think we can use Shellcode
Injection to exploit the program. To understand program’s flow faster, I’m using IDA Pro for
debugging process, and here is the result

Hmmmm, interesting. At first the program prints the location of our input. That will be really
important, because we can use that address to overwrite the return address of the program and
our input will be filled with shellcode, by doing that we can trigger the shell. But first we must find
the difference between our input and return address of the program

Let’s craft the payload

Run the payload

3. Flag
gigem{r3m073_fl46_3x3cu710n}

D. Pwn - Pwn 4

1. Executive Summary
nc pwn.tamuctf.com 4324
Difficulty: medium

2. Technical Report
Given binary file pwn4 with detail below

To understand program’s flow faster, I’m using IDA Pro for debugging process, and here is the
result

From the image above we could understand that:

1. If our input doesn’t contain any slash (“/”), it’ll pass through into run_cmd() function. In
the cmd function, our input will become the parameter of command ls.

2. But if its contain a slash (“/”), It’ll print “No slashes allowed”.

So how we gonna exploit this program? After long dive in gdb, I found that we can overflow the
return address of the program by putting a slash (“/”) in the beginning of our input. For the
padding, I’m using simple calculation just like the previous challenge

[our input]

[return address of the program]

Because we can’t trigger any shell via Shellcode Injection (NX Enabled), and there is no
function that could trigger the shell. I can conclude that we’ll use Ret2Libc exploit the program

First we craft the payload that will leak any libc. address of the program so we can find the
correct libc. version that is currently used by the server. In this payload, I’m using puts@plt to
print libc. address that is contained by gets@got, and to find the correct libc. version, I’m using
https://libc.blukat.me/

Let’s craft the payload

Then run it

Yep, it’s success leak libc. address of gets function (gets@got contains libc. address of
gets). Let’s find the difference among gets, system, and string “/bin/sh” by using previous
website

https://libc.blukat.me/

Now we have everything, it’s time to complete our payload

Run the payload

3. Flag
gigem{5y573m_0v3rfl0w}

E. Pwn - Pwn 5

1. Executive Summary
nc pwn.tamuctf.com 4325
Difficulty: medium

2. Technical Report
Given binary file pwn5 with detail below

Actually it’s a same program as the previous challenge (Pwn4), but with more enhancement,
because the binary is statically linked. Now the question is….how we gonna exploit this
program? After thinking for a while, then I remember my senior was told me about ROPGadget
(https://github.com/JonathanSalwan/ROPgadget). This tool can create a ropchain to trigger a
shell automatically. All we need to do just connect the padding with the ropchain, and voila, we
have our payload

First let’s find where our input is stored

From the image above we know that our input is stored at $ebp-0xd, let’s calculate the padding
padding = (user input - return address) - 1

= ($ebp-0xd - $ebp+0x4) - 0x1
= (0xd + 0x4) - 0x1
= 0x10
= 16

https://github.com/JonathanSalwan/ROPgadget

To generate the ropchain, use this command:
ROPgadget --binary pwn5 --ropchain

And here is the result

Let’s craft the payload by connecting the padding and the ropchain

Run the payload

3. Flag
gigem{r37urn_0r13n73d_pr4c71c3}

F. Web - Not Another SQLi Challenge

1. Executive Summary
http://web1.tamuctf.com
Difficulty: easy

2. Technical Report
Given a login page website

After seeing a login page website, what comes first to my mind is always “SQL
injection”, so i tried to do a simple SQL injection to this login page

Username: ‘or true --
Password: ‘ or true --

http://web1.tamuctf.com/

As you can see here, we are logined and the website printed out the flag for us easily

3. Flag
gigem{f4rm3r5_f4rm3r5_w3'r3_4ll_r16h7}

G. Web - Robots Rule

1. Executive Summary
http://web5.tamuctf.com
Difficulty: easy

2. Technical Report
Given a website looks like this

Robots huh? Seems like it has something to do with “robots.txt” file, lets try to access
robots.txt

This is the “robots.txt” file, this is where i got stuck at first. But look, Google robots?hm..
Seems familiar, then i tried to change the User-agent to Googlebot

http://web5.tamuctf.com/

3. Flag
gigem{be3p-bOop_rob0tz_4-lyfe}

H. Web - Many Gig’ems to you!

1. Executive Summary
http://web7.tamuctf.com

2. Technical Report
Given a website that have a mass of image

At the first sight, i saw the Cookies word, and i assume that the flag is in the web
cookies, it’s true but it’s only the last part of the flag, so i looked up to the source code
and searched for “gigem{“

Seeing something interesting right? “gigem{flag_in_”. hmm..?looks like it’s just a piece
of the full flag, lets note this one. Now lets go to the cookies.html page and see the
source, once again i searched for “gigem{“

http://web7.tamuctf.com/

And again, something interesting came up, “gigem{continued == source_and_” ?
Whoa, looks like it’s the other piece of the flag ! for the last piece of flag, let’s search the
cookies !

I used the “Edit this cookie” google chrome’s extension to see the cookies. See the
“gigem_continue” cookie there?Look at the value ! It’s the last piece of the flag !
“cookies}”

Flag
gigem{flag_in_source_and_cookies}

I. Crypto - -.-

1. Executive Summary
To 1337-H4X0R:
Our coworker Bob loves a good classical cipher. Unfortunately, he also loves to send everything
encrypted with these ciphers. Can you go ahead and decrypt this for me?
Difficulty: easy

2. Technical Report
Given file flag.txt that is contain bunch of strange language

After do some research on the net, I find out that this strange language is an International
Morse Code (https://morsecode.scphillips.com/morse.html). Then how I solve this challenge?
Well, I create a dictionary on a python based on the previous website and do the decryption

https://morsecode.scphillips.com/morse.html

Here is the solver then run it

Hmmm interesting, the result begins with 0x, isn’t it familiar? Yep, the flag is in hex form. Then
let’s try to decrypt it

3. Flag
gigem{C1icK_cl1CK-y0u_h4v3_m4I1}

J. Crypto - RSAaaay

1. Executive Summary
Hey, you're a hacker, right? I think I am too, look at what I made!

(2531257, 43)

My super secret message: 906851 991083 1780304 2380434 438490 356019 921472

822283 817856 556932 2102538 2501908 2211404 991083 1562919 38268

Problem is, I don't remember how to decrypt it... could you help me out?
Difficulty: easy

2. Technical Report
Given an RSA secret message, we need to know what is that numbers. From the
summary, we know that the super secret message is c. Now for the 2 numbers(2531257
and 43) we don’t know what is that yet. I’m assuming that 43 is e. So i tried it in python

We tried to use gcd function from fractions python library, it used to check if it’s the real
e in RSA. If the function returns 1, then it’s the right e

Seems like it’s the right e. Then i tried to factor the prime numbers from the n that we
assumed, we tried it in factordb.com

So we got the prime numbers. I think this is the right n. Let’s set them to p and q and
make the RSA Decode script.

Here’s the RSA decode script that we made, let’s run the script

See that bunch of numbers? We thought that it was an ASCII numbers, so we adjust it to
the proper ASCII number and we print it as a char

This is the updated script that we made to print out the plaintext. Let’s try to run the script

A string comes up and that’s the flag

3. Flag
gigem{Savage_Six_Flying_Tigers}

K. Crypto - :)

1. Executive Summary
Look at what I found!
XUBdTFdScw5XCVRGTglJXEpMSFpOQE5AVVxJBRpLT10aYBpIVwlbCVZATl1WTBpaTkBOQFVcSQdH

Difficulty: easy

2. Technical Report
Given a cryptic message that i couldn’t understand, we assume that we XOR the
ciphertext to “:)” string. We did but it’s not printable character, so… that cryptic text is
looks like base64. Let’s try to decode it as base64

This is the script that we made to decode it

Crap ! It’s just nothing! No flag comes up! But we then tried to XOR that useless string
with the string of “:)”

This is the script that we made to decode it, let’s run the script

A readable string comes up

3. Flag
gigem{I'm not superstitious, but I am a little stitious.}

L. Reverse - Cheesy

1. Executive Summary
Where will you find the flag?

2. Technical Report
Given a binary file reversing1. Then run the binary to see what happens

Look like base64 encoded string, let’s decode it one by one and see what happens

Feck, I should’ve known it’s a trap, none of them are flag. But there is something interesting
comes up. There is a string “You just missed the flag”, it means that the flag is inside the
binary but it isn’t printed by the program. Also the flag position must be between those two
strings (line 5 and line 6)

Let’s open it in IDA Pro

Yep, finally we find the flag, it’s time to decode it

3. Flag
gigem{3a5y_R3v3r51N6!}

M. Reverse - Snakes over cheese

1. Executive Summary
What kind of file is this?

2. Technical Report
Given a python 2.7 byte-compiled file reversing2.pyc. So to get the python source code, I’m
using uncompyle6, and here is the result

From the image above we know that the flag is Fqaa, so let’s change those decimal number
into ASCII characters

3. Flag
flag{decompile}

N. Reverse - KeyGenMe

1. Executive Sumarry
nc rev.tamuctf.com 7223

Difficulty: medium

2. Technical Report
Given a binary with the detail below

To understand the program flow easily, I used IDA Pro and here’s the result

From the images above, we could understand that:

1. The program asking for a product key and it is passed to the verify_key function
for a check

2. In the verify_key function, it checked the string length that we input as a product
key. If the length is below or equal 9 OR the length is above 0x40(64 as decimal)
the program would return and terminated, ELSE it would call the enc function
and pass the key there, then it compares the key with the string of
“[OIonU2_<__nK<KsK”

3. In the enc function, it changes the char in the string that we input to some char
that calculated in the function

For the solution, we have two different way to solve this challenge:

2.1 First Solution
So… the calculation is so complex, we decide to make a bruteforce script

This is the bruteforce script that we tried to crack the product key, let’s try to run it

This is the result, we only got 2 characters printed. Maybe we got the wrong calculation,
so we decide to bruteforce it manually using GDB. Thanks GDB

Disassemble verify_key, and break at the strcmp function

Run the program and let’s see how it works

So, there’s our input “GHZqwertyuiop”, and after the enc function called, it changes too
“[OFA<A7dUFAKi”, and compared with “[OIonU2_<__nK<KsK”, And of course it’s
false and terminate the program. So we bruteforce it per char until we got the same
comparison with string “[OIonU2_<__nK<KsK” :’v. After a long time we got the product
key

There ! the comparison is finally TRUE. Then we try the product key in the server

2.2 Second Solution
At first, I thought this challenge will use Z3 (https://github.com/Z3Prover/z3) or even
Angr (https://github.com/angr/angr), but feck, both of them couldn’t even solve the
algorithm of enc() and even Angr broke my virtualenv setup. After spend my time a while
in desperation, I came up with an idea of brute forcing, and here is the solver

Run the solver and try it locally in gdb. For the gdb, I set up a breakpoint where the
program compares our input with “[OIonU2_<__nK<KsK”

https://github.com/Z3Prover/z3
https://github.com/angr/angr

Let’s run it locally in gdb

Whoops, there is extra char in the end of it. So after some fixes, here is the final solver

Run it

3. Flag
Gigem{k3y63n_m3?_k3y63n_y0u!}

O. Network/Pentest - Stop and Listen

1. Executive Summary
Sometimes you just need to stop and listen.

This challenge is an introduction to our network exploit challenges, which are hosted over
OpenVPN.
Instructions:

● Install OpenVPN. Make sure to install the TAP driver.
○ Debian (Ubuntu/Kali) linux CLI: apt install openvpn
○ Windows GUI installer

● Obtain your OpenVPN configuration in the challenge modal.
○ You will obtain a separate config for each challenge containing connection info

and certificates for authentication.
● Launch OpenVPN:

○ CLI: sudo openvpn --config ${challenge}.ovpn
○ Windows GUI: Place the config file in %HOMEPATH%\OpenVPN\config and

right-click the VPN icon on the status bar, then select the config for this challenge

The virtual tap0 interface will be assigned the IP address 172.30.0.14/28 by default. If multiple
team members connect you will need to choose a unique IP for both.
The standard subnet is 172.30.0.0/28, so give that a scan ;)
If you have any issues, please let me (nategraf) know in the Discord chat
Some tools to get started:

● Wireshark
● tcpdump
● nmap
● ettercap
● bettercap

2. Technical Report
First, after installing OpenVPN, let’s launch the OpenVPN and wait until it’s success

https://gist.github.com/nategraf/74204dd8b55fb20d29c32ae2bb2ff679
https://openvpn.net/community-downloads/
https://www.wireshark.org/
http://man7.org/linux/man-pages/man1/tcpdump.1.html
https://nmap.org/
http://www.ettercap-project.org/ettercap/
https://github.com/bettercap/bettercap/

Now let’s open our wireshark and capture network traffic of tap0 interface. After that save the
result as .pcapng file

Let’s grep the flag

3. Flag
gigem{f0rty_tw0_c9d950b61ea83}

P. MicroServices - 0_intrusion

1. Executive Summary
Welcome to MicroServices inc, where do all things micro and service oriented!
Recently we got an alert saying there was suspicious traffic on one of our web servers. Can you
help us out?

1. What is the IP Address of the attacker?

2. Technical Report
Given a tcpdump capture file capture.pcap, let’s analyze the file and find the attacker

Hmmm interesting,from the image above we know the server’s ip is 10.83.20.77. And also
there is a lot of conversation between 10.83.20.77 and 10.91.9.93, and the gap with other
conversation is really large. So I assume that 10.91.9.93 is the attacker, and then I submit it.
Voila, it’s true, 10.91.9.93 is the attacker

3. Flag
10.91.9.93

Q. Secure Coding - PWN

1. Executive Summary
https://gitlab.tamuctf.com/root/pwn
Difficulty: easy

2. Technical Report

So in this challenge, we are asked to patch the program above so the program will no longer
vulnerable. As far as I know, gets function in C is really dangerous, because user can input
anything as long as they want except newline, if that happens, attacker can redirect the program
to call a shell via Shellcode Injection, Ret2Libc or even Return Oriented Programming

Instead of using gets to receive user input, I’m using fgets because I can set the max length of
the user input. For the max length, I set it to (size of buffer - 1), because I want to avoid Off by
One vulnerability that could happen if we set the max length of the user input same as the size
of buffer (remember gets/fgets always appends 0xa or newline in the end of it). Finally here is
the final program

https://gitlab.tamuctf.com/root/pwn

And check the flag in CI/CD > Jobs

3. Flag
gigem{check_that_buffer_size_baby}

R. Secure Coding - SQL

1. Executive Summary
https://gitlab.tamuctf.com/root/sql

2. Technical Report

In this challenge, we have to patch the program so it will be more secured. In here we
see the user and password variable is has a vulnerability. The user can input SQL
Injection to bypass the login and do something else.

So i change the user variable with the more secure way to set post variable for login
using real_escape_string function and that’s all. Done.

And check the flag in CI/CD > Jobs

3. Flag
gigem{the_best_damn_sql_anywhere}

S. Misc - I heard you like files

1. Executive Summary
Bender B. Rodriguez was caught with a flash drive with only a single file on it. We think it
may contain valuable information. His area of research is PDF files, so it's strange that this
file is a PNG.
Difficulty: easy-medium

2. Technical Report
Given a png file

I think there’s file inside the png, so i tried to foremost the png, and here’s the result

Looks like there’s another file. The hint mentioned a PDF file, so i tried to opened it but
unfortunately it’s not the flag. So i opened the zip and unzip it and here’s the result

So much files, and there’s “not_the_flag.txt” file. Yes it’s not the flag, but there’s
another PNG file. So i tried to cat the file and it looks like this

Something interesting just come up, in the bottom at the end of file. It looks like base64
so i tried to decode it as base64

3. Flag
flag{P0lYt@r_D0_y0u_G3t_It_N0w?}

T. Misc - Hello World

1. Executive Summary
My first program!
Difficulty: medium

2. Technical Report
Given a c++ source code like this

But it’s weird, there’s a lot of white spaces above the c++ code, so i conclude that it’s a
whitespace code, so i tried to compile it online and here’s the result

The output is just a normal string, not a flag. So something interesting comes up in the
stack, you see there’s pushes of decimals so i tried to change it into char in python

This is script that i made to decode those decimals, let’s run the script

3. Flag
gigem{0h_my_wh4t_sp4c1ng_y0u_h4v3}

U. ReadingRainbow - 0_Network_Enumeration

1. Executive Summary
Recently, the office put up a private webserver to store important information about the
newest research project for the company. This information was to be kept confidential, as it's
release could mean a large loss for everyone in the office.
Just as the research was about to be published, a competing firm published information
eerily similar. Too similar...
Time to take a look through the office network logs to figure out what happened.

1. What is the IP address of the private webserver?
2. How many hosts made contact with the private webserver that day?

Difficulty: easy

2. Technical Report
Given a pcap file, i opened it with wireshark

1st question of the flag asked us the IP of the private webserver, i start guessing with the
first ip that came up in the wireshark, 192.168.11.4
2nd question of the flag asked us about many how hosts made contact with the private
webserver that day, i made a guess from 1 to 13 and got it right at 13

3. Flag
1. 192.168.11.4
2. 13

V. DriveByInc - 0_intrusion

1. Executive Summary
Welcome to Drive By Inc. We provide all sorts of logistical solutions for our customers. Over
the past few years we moved to hosting a large portion of our business on a nice looking
website. Recently our customers are complaining that the front page of our website is
causing their computers to run extremely slowly. We hope that it is just because we added
too much javascript but can you take a look for us just to make sure?

1. What is the full malicious line? (Including any HTML tags)

2. Technical Report
Given a website with malicious code, so i started it by looking at the source code like this

Malicious line it said, so i searched for javascript code because html and css won’t
produce a malicious line. At the very bottom of the code, i see the malicious code. Yeah ,
it is coinhive. It used to mine bitcoin using our PC, so let’s submit that

3. Flag
<script>var color = new
CoinHive.Anonymous("123456-asdfgh");color.start()</script></body>

